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Abstract In the paper, we considered a food chain chemostat model with a
Beddington–DeAngelis functional response of predator, with periodical input and
washout occurring at different fixed times. We obtained exact periodic solutions for
the model with substrate and prey only. The stability analysis for this periodic solutions
yields an invasion threshold for period of pulses of the predator. When the impulsive
period is greater than the threshold, there are periodic oscillations in substrate, prey,
and predator. If the impulsive period is increased further, the system undergoes the
complex dynamic process. By analyzing bifurcation diagrams, we can see that the
impulsive system shows two kinds of bifurcations; period-doubling and period-halv-
ing.

Keywords Predator–prey system · Impulsive invasion and washout · Chemostat ·
Complexity

1 Introduction

The chemostat is an important laboratory apparatus use culture microorganisms. It
plays an important role as a model in mathematical biology. In 1977, Hsu et al. [1]
and Hsu [2] studied a chemostat model in which the response function was mod-
elled by Michaelis–Menten dynamics. Then, many papers [3,4] studied a chemo-
stat model with the Michaelis–Menten functional response. But, there are few papers
which study a chemostat model with Beddington–DeAngelis functional response. The
Beddington–DeAngelis functional response is different from the traditional mono-
tone or non-monotone functional response. It was introduced by Beddington and
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DeAngelis et al. [5]. It is similar to the well-known Holling type II functional response
but has an extra term by1(t) in the denominator that models mutual interference in a
species. It can be derived mechanistically via considerations of time utilization [6,7]
or spatial limits on predation [8]. Harrison [9] showed that the Beddington–DeAn-
gelis functional response (for intraspecific interference competition) was superior to
functional response without such competition in a microbial predator–prey interaction.

Many papers have studied a chemostat with periodic input [10] or periodic washout
rate [11] or periodic input and washout [12,13] and different removal rate [14]. It is
well-known that countless organisms live in seasonally or diurnally forced environ-
ments, in which the populations obtain food, so the effects of forcing may be quite
profound (for example, seasonal effects of weather, food supply, mating habits, etc.).
We all know that nutrients are input into lakes and lakes washed out during floods.
There are still some other perturbations, such as fires, earthquakes, etc, that are not
suitable to be considered as continuous. These perturbations bring sudden change to
the system. So, it is natural to describe these cases by impulsive differential equation
models in which extend impulses can occur. Impulsive differential equations are used
in almost every domain of applied science and has been studied investigations [15–20].

Periodic forcing and impulsive effects are two different approaches to simulating
seasonal or other variations. Recently, it has been of interest to investigate the possible
existence of chaos in biological population. The models of predator–prey system in
periodic forcing and impulsive perturbation environments have attracted the atten-
tion of many scholars. The papers [21–23] have shown that periodic forcing systems
possess complex dynamics. Many authors [24,25] have studied predator–prey system
with impulsive perturbations, and the impulsive perturbations bring complexity to the
system. Funasaki and Kot [26] studied the model of a chemostat with predator, prey
and periodically pulsed substrate. They have investigated the existence and stability of
the periodic solutions of the impulsive subsystem with substrate and prey. Further, they
have shown that impulsive invasion cause complex dynamics of system, and obtained
way to chaos in a cascade of period-doubling bifurcation.

The goal of this paper is to study the system for a chemostat with predator, prey and
periodically pulsed substrate and washout at different fixed moments which incorpo-
rate the Beddington–DeAngelis functional response of predator. The model takes the
form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s′
1(t) = − k1

δ1
s1(t)x1(t),

x ′
1(t) = k1s1(t)x1(t) − k2

δ2

x1(t)y1(t)
B+x1(t)+by1(t) ,

y′
1(t) = k2x1(t)y1(t)

B+x1(t)+by1(t) ,

⎫
⎪⎪⎬

⎪⎪⎭

t �= nT, t �= (n + l − 1)T

s1(t+) = s1(t) + Ds0,

x1(t+) = x1(t),
y1(t+) = y1(t),

⎫
⎬

⎭
t = nT,

s1(t+) = s1(t) − Ds1(t),
x1(t+) = x1(t) − Dx1(t),
y1(t+) = y1(t) − Dy1(t),

⎫
⎬

⎭
t = (n + l − 1)T .

(1.0)

where s1(t), x1(t) and y1(t) represent the concentrations of limiting substrate, prey
and predator, 0 ≤ l < 1, 0 ≤ D < 1 is the washout proportion of the chemostat each
time; k1 and k2 are the uptake and predation constants of the prey and predator; δ1 is
the yield of prey per unit mass of substrate; δ2 is the biomass yield of predator per unit
mass of prey; Ds0 is the amount of limiting substrate pulsed each T ; T is the period of
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the impulsive effect; B, b are positive constants. n ∈ N , N is the set of non-negative
integers.

For the sake of simplicity, we put the model equations (1.0) in dimensionless, i.e.

s = s1

s0
, x = x1

δ1s0
, y = y1

δ1δ2s0

We obtain the following impulsive differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s′(t) = −ks(t)x(t),
x ′(t) = ks(t)x(t) − hx(t)y(t)

a+x(t)+cy(t) ,

y′(t) = hx(t)y(t)
a+x(t)+cy(t) ,

⎫
⎪⎬

⎪⎭
t �= nT, t �= (n + l − 1)T

s(t+) = s(t) + D,

x(t+) = x(t),
y(t+) = y(t),

⎫
⎬

⎭
t = nT,

s(t+) = s(t) − Ds(t),
x(t+) = x(t) − Dx(t),
y(t+) = y(t) − Dy(t),

⎫
⎬

⎭
t = (n + l − 1)T

(1.1)

where k = k1s0, h = k2, a = B
δ1s0

, c = bδ2.
The organization of the paper is as follows: In Sect. 2, we investigate the dynamic

behaviors of impulsive subsystem with substrate and prey. In Sect. 3, we study the
stability of the predator-free periodic solution. By using Floquet theorem [27] of impul-
sive differential equations and the small amplitude perturbation method, we obtain that
the threshold of periodic oscillations in predator, prey, and substrate. In Sect. 4, we
show bifurcation diagrams of different bifurcation parameters, and discuss the the
complexity of system (1.1). A brief conclusion is given in the last section.

2 Dynamic behaviors of the substrate–prey subsystem

In the absence of the predator, system (1.1) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

s′(t) = −ks(t)x(t),
x ′(t) = ks(t)x(t),

}

t �= nT, t �= (n + l − 1)T

s(t+) = s(t) + D,

x(t+) = x(t),

}

t = nT,
s(t+) = s(t) − Ds(t),
x(t+) = x(t) − Dx(t),

}

t = (n + l − 1)T .

(2.1)

This nonlinear system possesses a simple periodic solution. We investigate the sta-
bility of this periodic solution.

Theorem 2.1 (1) If T < 1
k(l D+(1−D))

ln 1
1−D , then the T -periodic solution (s1(t),

x1(t)) is asymptotically stable, where

⎧
⎪⎪⎨

⎪⎪⎩

s1(t) =
{

1 t ∈ (nT, (n + l)T ]
1 − D t ∈ ((n + l)T, (n + 1)T ]

x1(t) =
{

0 t ∈ (nT, (n + l)T ]
0 t ∈ ((n + l)T, (n + 1)T ]

(2.2)
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(2) If T > 1
k(l D+(1−D))

ln 1
1−D , then T -periodic solution (s2(t), x2(t)) is asymp-

totically stable, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s2(t)=
⎧
⎨

⎩

Dexp(−k(t−nT ))
1−exp(−K )−D+Dexp(−k(t−nT ))

t ∈(nT,(n+l)T ]
(1−D)Dexp(−kl DT )exp(−k(1−D)(t−nT ))

1−exp(−K ))−D+Dexp(−kl DT )exp(−k(1−D)(t−nT ))
t ∈((n+l)T,(n+1)T ]

x2(t)=
⎧
⎨

⎩

1−exp(−K )−D
1−exp(−K )−D+Dexp(−k(t−nT ))

t ∈(nT,(n+l)T ]
(1−D)(1−exp(−K )−D)

1−exp(−K )−D+Dexp(−kl DT )exp(−k(1−D)(t−nT ))
t ∈((n+l)T,(n+1)T ]

(2.3)

where K = kT (l D + (1 − D)).

Proof Adding the first and second equations of system (2.1)

s′(t) + x ′(t) = 0 (2.4)

We integrate and solve for the concentration in the chemostant over the pulse period,
and we obtain

s(t) + x(t) =
{

sn + xn t ∈ (nT, (n + l)T ]
(1 − D)(sn + xn) t ∈ ((n + l)T, (n + 1)T ] (2.5)

where sn and xn are the initial concentrations of substrate and prey at time nT . Thus,
Eq. 2.5 allows us to decouple the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s′(t) =
{

−k(sn + xn)s(t) + k(sn + xn)s2(t) t ∈ (nT, (n + l)T ]
−k(sn+l + xn+l)s(t) + k(sn+l + xn+l)s2(t) t ∈ ((n + l)T, (n + 1)T ]

x ′(t) =
{

k(sn + xn)x(t) + k(sn + xn)x2(t) t ∈ (nT, (n + 1)T ]
k(sn+l + xn+l)x(t) + k(sn+l + xn+l)x2(t) t ∈ ((n + l)T, (n + 1)T ]

(2.6)

where
⎧
⎨

⎩

sn+l = (1−D)(sn+xn)sn exp(−k(sn+xn)lT )
xn+sn exp(−k(sn+xn)lT )

xn+l = (1−D)(sn+xn)xn
xn+sn exp(−k(sn+xn)lT )

Solving Eq. 2.6, we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s(t) =
⎧
⎨

⎩

(sn+xn )sn exp(−k(sn+xn )(t−nT ))
xn+sn exp(−k(sn+xn )(t−nT ))

t ∈ (nT, (n + l)T ]
(1−D)(sn+xn )sn exp(−k(sn+xn )l DT ) exp(−k(1−D)(sn+xn )(t−nT ))

xn+sn exp(−k(sn+xn )l DT ) exp(−k(1−D)(sn+xn )(t−nT ))
, t ∈ ((n + l)T, (n + 1)T ]

x(t) =
⎧
⎨

⎩

(sn+xn )xn
xn+sn exp(−k(sn+xn )(t−nT ))

t ∈ (nT, (n + l)T ]
(1−D)(sn+xn )xn

xn+sn exp(−k(sn+xn )l DT ) exp(−k(1−D)(sn+xn )(t−nT ))
t ∈ ((n + l)T, (n + 1)T ]

(2.7)
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Equation 2.7 hold during period of the pulse. We can obtain the following difference
equations:

sn+1 = D + (1−D)(sn+xn)sn exp(−k(sn+xn)l DT ) exp(−k(1−D)(sn+xn)T )
xn+sn exp(−k(sn+xn)l DT ) exp(−k(1−D)(sn+xn)T )

xn+1 = (1−D)(sn+xn)xn
xn+sn exp(−k(sn+xn)l DT ) exp(−k(1−D)(sn+xn)T )

(2.8)

Difference equations (2.8) describe the substrate and prey concentrations at a impul-
sive time t = nT in terms of values at the previous pulse t = (n + 1)T . We are, in
other words, stroboscopically sampling the chemostat at its forcing period. The limit-
ing behavior of system (2.8) coupled with (2.7), determines the asymptotic behavior
within the chemostat.

Adding the two equations of Eq. 2.8, we can get an simple difference equation

sn+1 + xn+1 = D + (1 − D)(xn + sn) (2.9)

Equation 2.9 is linear, and may be solved exactly

sn+1 + xn+1 = 1 − (1 − D)n+1 + (1 − D)n+1(s0 + x0)

Moreover, we get lim
n→∞(sn + xn) = 1. Decoupling stroboscopic map (2.8), we

obtain the following difference equations:

sn+1 = D + (1−D)sn exp(−kT (l D+(1−D)))
sn+xn exp(−kT (l D+(1−D)))

xn+1 = (1−D)xn
xn+sn exp(−kT (l D+(1−D)))

(2.10)

Equation 2.10 possess two equilibria, corresponding to extinction (s∗
1 , x∗

1 ) = (1, 0),
or survival of the predaton (s∗

2 , x∗
2 ) = ( D

1−exp(−kT (l D+(1−D)))
, 1− D

1−exp(−kT (l D+(1−D)))
).

The stability of equilibrium is determined by the slope λ of difference equation
(2.10) at that equilibrium. If | λ | < 1,that this equilibrium is stable. Evaluating
the derivatives of Eq. 2.10 at equilibria (s∗

1 , x∗
1 ) and (s∗

2 , x∗
2 ), respectively, we get

λ1 = (1 − D) exp(−kT (l D + (1 − D))) and λ2 = 1
(1−D) exp(−kT (l D+(1−D)))

For T < 1
k(l D+(1−D))

ln 1
1−D , equilibrium (s∗

1 , x∗
1 ) is stable. The prey wash out

of the chemostat. The equilibrium of stroboscopic map corresponds to the periodic
solution of system (2.1). For this range of T , the trajectories of system of system (2.1)
approach the periodic solution (2.2).

For T > 1
k(l D+(1−D))

ln 1
1−D , the equilibrium (s∗

2 , x∗
2 ) is stable. For this range of

T , the trajectories of system of system (2.1) approach the periodic solution (2.3). This
completes the proof. �	
Remark At T = T0 = 1

k(l D+(1−D))
ln 1

1−D , there is a transcritical bifurcation of peri-
odic solutions, as (s1(t), x1(t) and (s2(t), x2(t) pass through each other and exchange
stability.
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3 Invasion of the predator

In order to investigate the invasion of the predator of system (1.1), we discuss the
stability of the predator-free periodic solution (s2(t), x2(t), 0).

Theorem 3.1 Let (s(t), x(t), y(t)) be any solution of (1.1), then (s2(t), x2(t), 0) is
asymptotically stable provided that T > 1

k(l D+(1−D))
ln 1

1−D and
∫ T

0
hx2(t)

a+x2(t)
dt <

ln 1
1−D .

Proof The local stability of periodic solution (s2(t), x2(t), 0) may be determined by
considering the behavior of small amplitude perturbations of the solution. Define

s(t) = u(t) + s2(t), x(t) = v(t) + x2(t), y(t) = w(t) + 0,

one can write

⎛

⎝
u(t)
v(t)
w(t)

⎞

⎠ = �(t)

⎛

⎝
u(0)

v(0)

w(0)

⎞

⎠ ,

where �(t) satisfies

d�

dt
=

⎛

⎜
⎝

−kx2(t) −ks2(t) 0
kx2(t) ks2(t) − hx2(t)

a+x2(t)

0 0 hx2(t)
a+x2(t)

⎞

⎟
⎠ �(t),

and �(0) = I , the identity matrix. The resetting impulsive condition of (1.1) becomes

⎛

⎝
u((n + l − 1)T +)

v((n + l − 1)T +)

w((n + l − 1)T +)

⎞

⎠ =
⎛

⎝
1 − D 0 0

0 1 − D 0
0 0 1 − D

⎞

⎠

⎛

⎝
u((n + l − 1)T )

v((n + l − 1)T )

w((n + l − 1)T )

⎞

⎠ ,

and

⎛

⎝
u(nT +)

v((nT +)

w(nT +)

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
u(nT )

v(nT )

w(nT )

⎞

⎠ .

The stability of the periodic solution (s2(t), x2(t), 0) is determined by the eigen-
values of

M =
⎛

⎝
1 − D 0 0

0 1 − D 0
0 0 1 − D

⎞

⎠

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎜
⎝

ϕ11(T ) ϕ12(T ) �

ϕ21(T ) ϕ22(T ) ��

0 0 exp
(∫ T

0
hx2(t)

a+x2(t)
dt

)

⎞

⎟
⎠ .
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Fig. 1 Time series of system (1.1) at T = 0.4 with l = 0.2, D = 0.4, k = 2, h = 0.2, a = 0.1, c = 0.2

There are no need to calculate the exact values of (�) and (��), as it is not required in
the analysis that follows.

The eigenvalues of the matrix M are λ3 = (1 − D) exp
(∫ T

0
hx2(t)

a+x2(t)
dt

)
and the

eigenvalues λ1 and λ2 of the following matrix

(
ϕ11(T ) ϕ12(T )

ϕ21(T ) ϕ22(T )

)

.

The eigenvalues λ1, λ2 are also the multipliers of the locally linearizing system of
system (2.1) provided with T > 1

k(l D+(1−D))
ln 1

1−D at the asymptotically stable peri-
odic solution (s2(t), x2(t)). According to Theorem 2.1, we have that λ1 < 1, λ2 < 1.
λ3 < 1 if and only if

∫ T
0

hx2(t)
a+x2(t)

dt < ln 1
1−D . According to Floquet theory of impulsive

differential equation, the periodic solution (s2(t), x2(t), 0) is asymptotically stable.
This completes the proof. �	

Let l = 0.2, D = 0.4, k = 2, h = 0.2, a = 0.1, c = 0.2, T = 0.4. Then
1

k(l D+(1−D))
ln 1

1−D ≈ 0.375. Thus, the conditions of Theorem 3.1 are satisfied, and
the system (1.1) has the periodic solution (s2(t), x2(t), 0). A typical periodic solution
(s2(t), x2(t), 0) is shown in Fig. 1.

When T > 1
k(l D+(1−D))

ln 1
1−D and

∫ T
0

hx2(t)
a+x2(t)

dt > ln 1
1−D , and is sufficiently

small, substrate, prey, predator coexist periodically. The predator has succeeded in
invading the chemostat.
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4 Chemostat chaos

In this section, we will study the dynamics of system (1.1) with periodically input
and washout at different fixed times. Bifurcation diagrams for different bifurcation
parameters are obtained, and incarnates the dynamic behavior of the system.

Set k = 2, h = 0.5, a = 0.01, c = 0.5, D = 0.4, l = 0.2. We want
to investigate the influence of T . The effect of T may be documented by strobo-
scopically sampling one of the variables over a range of T values. In Fig. 2, we
have displayed bifurcation diagrams for impulsive period T as T increases from 4 to
13 with initial values (s(0), x(0), y(0)) = (0.2, 0.3, 0.04). By Theorem 3.1 , when
T > 1

K ln 1
1−D ≈ 2.235 and

∫ T
0

0.5x2(t)
0.01+x2(t)

dt > ln 5, periodic solution (s2(t), x2(t), 0)

is unstable and a T -periodic solution for substrate, prey, and predator coexisting is
stable (Fig. 3a). when T ≥ 5.8, T -periodic solution is unstable and system (1.1) comes
into chaotic area (Fig. 3b) with peridic windows (Fig. 4).

Let h = 5, a = 1, c = 0.2, D = 0.9, l = 0, T = 8. We have got bifurcation
diagrams (Fig. 5) of the system (1.1) showing the effect of k. The bifurcation diagrams
(Fig. 5) clearly show that: when k > 0.31, there is a cascade of period doubling bifur-
cations leading to chaos (Fig. 6). Which is followed by a cascade of periodic halfing
bifurcations from chaos to periodic solution. This periodic doubling route to chaos is
the hallmark of the logistic and Ricker maps [28] and has be studied extensively by
mathematicians [29]. Periodic halving is the flip bifurcation in the opposite direction,
which is also observed in [30]

Bifurcation diagrams Fig. 7 tell us that: with h increasing from 1 to 7, the system
experiences the processes of periodic doubling cascade to chaos.

Fig. 2 Bifurcation diagrams of system (1.1) with l = 0.2, D = 0.4, k = 2, h = 0.5, a = 0.01, c = 0.5.

(a), (b) and (c) s, x, y are plotted for T over [4, 13], respectively
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Fig. 3 Period solution and chaos: (a) phase portrait of T -periodic solution for T = 5, (b) phase portrait of
chaos solution for T = 7

Fig. 4 Period windows. (a) Phase portrait of 5T -periodic solution for T = 8.3, (b) phase portrait of
4T -periodic solution for T = 12

Fig. 5 Bifurcation diagrams of system (1.1) with l = 0, D = 0.9, h = 1, a = 1, c = 0.2, T = 8. (a), (b)
and (c) s, x, y are plotted for k over [0.1,5] respectively
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Fig. 6 Period doubling cascade to chaos: (a) phase portrait of 2T -periodic solution for k = 1, (b) phase
portrait of 4T -periodic solution for k = 1.12, (c) Phase portrait of chaos solution for k = 2

Fig. 7 Bifurcation diagrams of system (1.1) with l = 0, D = 0.9, k = 2, a = 1, c = 0.2, T = 8. (a), (b)
and (c) s, x, y are plotted for k over [1,7], respectively

5 Conclusion

In this paper, we have investigated a food chain chemostat model with Beddington–
DeAngelis functional response and periodically input and washout at different fixed
time. First, we find the invasion threshold of the predation, which is T0 = 1

K ln 1
1−D .
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Furthermore, by Floquet theorem and the small amplitude perturbation method, we
have proven the predator eradication periodic solution (s2(t), x2(t), 0) is locally
asymptotically stable for T < 1

k(l D+(1−D))
ln 1

1−D . When T > 1
k(l D+(1−D))

ln 1
1−D

and
∫ T

0
hx2(t)

a+x2(t)
dt > ln 1

1−D , predator can invade and there are periodic oscillations in
substrate, prey, predator. If the period of pulses is further increased, the system will
exhibit complicated dynamical behaviors.

We have obtained bifurcation diagrams (Figs. 2, 5, 6) for different bifurcation
parameters T, k, h. Bifurcation diagrams have shown that the system (1.1) exhibits
the rich dynamics, which include: (1) periodic solution, (2) periodic doubling cascade,
(3) chaos (chaotic region with periodic windows), (4) periodic halving cascade. All
these results show that dynamical behavior of system (1.1) becomes more complex
under periodically impulsive perturbations.
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